
Serverless
best practices

Dashbird.io

Pro tips to get
your apps to
the next level

Serverless is a different beast in comparison to traditional infrastructures where developers retain the

burden of configuring and monitoring their own fleet of machines. Serverless abstracts away all this and

while doing so it substantially changes how we should think about architecting, deploying and

monitoring applications. The goal of this ebook is to introduce some of the best practices and cover

what is needed to appropriately adapt our approach to the serverless paradigm.

The ebook in structured in four sections:

 - Frameworks: makes a developer life a lot easier to deploy and configure serverless apps

 - Logging & Debugging: how to best track and fix issues in serverless environments

 - Monitoring: stay on top of your application performance and behavior to ensure its quality

 - Architectural Patterns: leverage serverless to produce maintainable, extensible and resilient code

Bear with us on the next pages to take off for a whole new level of application development!

Intro

01

serverless is
a UNIque beast
Although we can work with the same programming

languages in a serverless platform, its idiosyncrasies

require a different approach in several areas of

application development and monitoring

Frameworks

Some tasks required to configure and deploy a serverless application would be too time consuming (and

actually boring) to do without the help of a serverless framework. A developer gets no benefit from taking

care of these tasks manually, so it makes total sense to take advantage of a framework.

Here is a list of tasks that a serverless framework will help you on:

- Bundling and packaging code for deployment

- The actual deployment process (which may take multiple steps in itself)

- Setting environment variables

- Managing secrets

- Configuring endpoints to expose your serverless service as a public API

- Taking care of properly setting the permissions needed by the function

- And more...

The ecosystem for serverless frameworks is quite rich and diverse. Some are focused on specific

programming languages and/or cloud providers. Others are runtime and cloud-agnostic. Next is a list of

some of the main frameworks, as well as their strengths and weaknesses.

Dashbird.io • Serverless Best Practices 03

— "I would go so far as to say that there is no minimum level of

complexity under which you shouldn’t use a [serverless]

deployment framework." Paul Swail

Serverless Framework
Website: https://serverless.com

Repository: https://github.com/serverless/serverless

License: MIT

This is perhaps the most popular framework for serverless environments currently. It’s cloud-agnostic and

extensible with community plugins. Unless your application requires specific features for special needs not

supported by it, we would recommend this framework as the best choice.

Chalice
Website: https://chalice.readthedocs.io/en/latest/

Repository: https://github.com/aws/chalice

License: Apache 2.0

Created and open-sourced by the AWS Lambda team, Chalice is one of the most popular frameworks

targeted at AWS Lambda and Python developers. The way it handles declarations of HTTP endpoint

handlers resembles a lot how the popular framework Flask works, which makes it a bit easier to migrate

Flask applications to the AWS serverless platform.

Dashbird.io • Serverless Best Practices 04

AWS SAM
Website: https://aws.amazon.com/serverless/sam/

Repository: https://github.com/awslabs/serverless-application-model

License: Apache 2.0

SAM stands for Serverless Application Model. It is a framework developed by AWS that prescribes ways to

express a serverless application targeted at AWS Lambda. It then uses AWS CloudFormation to deploy

and manage SAM applications in the cloud. Also offering a local command line interface (SAM CLI), it

provides a way to simulate AWS Lambda locally, greatly simplifying the development and testing of

serverless projects.

Other Contenders
As we said above, the ecosystem is quite rich and we could go over this list endlessly. The purpose of this

section was to introduce you to the main serverless frameworks and give a head start for your own

investigation. We encourage you to explore options and verify which framework would better suit your

needs.

Additional to the list above, we suggest going through this great compilation of frameworks:

https://github.com/anaibol/awesome-serverless#frameworks

Logging &
Debugging

In serverless environments such as AWS Lambda, developers can’t have control over the platform that is

running code. That means developers can’t rely on metrics being generated by background processes or

daemons anymore. Code could be instrumented to send metrics to third-party services in real time, but

that means latency will be added to the overall execution. Amazon conducted a study in the past and has

found that every 100 milliseconds added to a customer facing request leads to 1% loss in sales.

To properly conduct logging and debugging of serverless applications we must rethink the way we

approach these activities. In this section we cover good practices to make sure our apps are on track.

Dashbird.io • Serverless Best Practices 06

— "Anything that can possibly go wrong, will go wrong".
Murphy Law

Local Environment
One of the challenges in serverless, especially when using a cloud service provider, such as AWS Lambda,

is replicating the production environment in a local machine, as closely as possible.

There are many solutions to tackle this challenge. AWS, for example, offers two ways to replicate Lambda

in a local machine:

IDE Plugins

AWS has plugins for both Eclipse and Microsoft Visual Studio IDEs. The Eclipse plugin is more limited, not

helpful for local debugging for example, while the Visual Studio one is more comprehensive, helping with

development and debugging, but unfortunately it is limited to .NET applications only.

SAM Local

As discussed previously on this e-book, SAM is one of AWS serverless frameworks. It provides a CLI

interface to emulate Lambda locally, making it easier to test and debug serverless applications

Each cloud provider will offer its own solutions to help in local testing and debugging. Open source

serverless projects, such as OpenFaaS, will also have their own models and solutions for local environment

simulation. Depending on the solution chosen for a project, it will determine which are the best options for

local environment configuration.

Cloud Logging Services
AWS CloudWatch

CloudWatch is the default AWS solution for logging. It is designed to serve the entire AWS catalog of cloud

services. It does its job well, but since it was not designed especially for serverless, it misses many key

features desired for this type of platform.

A few of these missing serverless features in AWS CloudWatch:

- CloudWatch keeps multiple invocations logs in a single log stream, which makes it cluttered and harder

to debug issues;

- It is not possible to filter invocations by status or type of result; for instance, when investigating an error, it

would be handy to filter only invocations that resulted in errors, obviously, but it’s not possible in

CloudWatch;

- Does not do a great job in identifying cold starts or retries; Lambda has a retry behavior that may cause

serious issues, if not considered appropriately; being able to track retry invocations, linked to the original

source, is paramount, but CloudWatch misses this need;

- It is very common to have multiple functions working together (as micro services) to accomplish a larger

task; being able to debug those functions as a single group is very handy when it comes to narrowing

down sources of issues for example, but CloudWatch does not help here;

Azure Log Analytics

Azure logging services goes a bit ahead of CloudWatch, offering not only storage and browsing of logs, but

also some analytical services on top of those. It applies machine learning, for example, to monitor

application performance and identify opportunities for optimization.

It suffers from the same limitations as CloudWatch in the sense that it’s not designed for specifically for a

serverless architecture, thus lacking support for the way this type of application needs to be debugged

and monitored.

Google Stackdriver

Very similarly to AWS and Azure, Google covers most logging and monitoring needs with the Stackdriver

offerings: from logging to monitoring and tracing of cloud applications.

Just as AWS and Azure, as well, Google catalog is not tailored for serverless applications.

Dashbird.io • Serverless Best Practices 07

Full featured logging services
Since most cloud providers do not offer everything that development teams need for logging and

debugging serverless applications, there are a few third-party services available with more advanced

offerings. They can save a lot of time and even avoid all sorts of damage (branding, reputation, legal, etc)

due to poorly monitored and maintained applications.

Dashbird

https://dashbird.io

Dashbird was designed from the ground up to meet the needs for serverless applications in terms of

logging and monitoring. It allows developers to view invocations individually, links all invocations failed and

retried, tracks application exceptions and runtime errors, such as timeouts, memory exhaustion, etc.

Dashbird approach doesn’t add a millisecond to the function execution time. By collecting logs from

CloudWatch and parsing them in a smart way for alerting and reporting purposes, Dashbird empowers

developers to monitor applications with ease without compromising performance.

Dashbird also offers some handy features, such as grouping multiple functions into a single group, called

“Project”, which allows to monitor and debug them as a whole, saving time and gaining visibility over the

application stack. By setting custom policies following performance thresholds the application should

meet, Dashbird proactively alerts the development team when functions starts behaving in an undesired or

unpredicted way.

Another advantage is that pricing is also tailored for the serverless architecture. The service charges

proportionally to the amount of data generated in logs, so developers have full control over how much

they want to use and pay.

Datadog

https://datadog.com

Datadog is an old player in the logging/monitoring services arena. Although it has traditionally targeted a

broader usage of cloud services with general-purpose offerings, only very recently it has started to catch

up with the needs of serverless developers.

NewRelic

https://newrelic.com

Similarly to Datadog, NewRelic has been a traditional player in this field, with general purpose offerings for

logging and monitoring. It has also made efforts to adapt itself for the needs of teams using serverless, but

still lack the tailoring that we find in services purpose-built for serverless applications.

Dashbird.io • Serverless Best Practices 08

Security
Some types of information are critical to log in serverless applications, so that they are available when it

comes the time to act on security breaches. Having critical logs will help, for example, understand which

security flaws attackers explored and how to fix them, or build a blacklist of IP addresses, or identify

compromised customer accounts.

Below are some examples of information we could classify as critical for logging in a serverless app.

Invocation/Event Inputs

Having the event input data will be important when analyzing a possible security breach. We could retrace

the attackers steps and understand which flaws were explored.

Response Payload

Similarly to Invocation Inputs, logging response payloads could also be helpful to analyze and mitigate

security breaches. First of all, in the worst case scenario of not being able to stop an attack, we will at least

want to know what information is now in possession of the attackers. These logs will answer just that.

Authentication Requests

For applications that have some sort of login/authorization protected area, it’s important to log the

authentication requests. If the app starts getting too many authorization failures, we would want to have

policies (more on the next section) to alert us, since that could be a signal of an attacker looking to crack a

user’s account.

Monitoring

Dashbird.io • Serverless Best Practices 10

— "Monitoring Serverless is a new beast in itself. Traditional

methods will not work. A new mindset is in order".
Adnan Rahic

Tracing
Serverless functions will almost always interact with external services, especially because they intrinsically

can’t persist data. Whether it’s a database, an object storage, a datalake or else, functions need external

storage to accomplish tasks that rely on statefulness of data. Other services interacting with functions may

be message queues, data streaming processing, authentication mechanisms, machine learning models,

etc.

While tracking the entire lifecycle of a serverless function runtime execution is essential for performance

improvement, security monitoring, debugging, etc, all these external interactions pose difficulties for that.

For this reason, there are solutions especially tailored for instrumenting serverless functions.

AWS, for example, offers a service called X-Ray. It’s role is to basically track everything your function runs,

not only internally, but also all the interactions with external services in the same cloud or externally (a

third-party HTTP endpoint, for instance). As your function runs, it collects valuable insights, such as latency,

information exchanged, etc., to help developers fully understand what is happening under the hood, which

steps occurred first, what caused a given error, which parts are compromising speed of execution, among

other evaluations.

Some monitoring/debugging services, such as Dashbird (discussed above), also integrate with X-Ray (or

similar services), so that developers can have everything in the same place: logs, error reporting, alert

policies and the entire instrumentation of their serverless apps.

One very important thing to consider when choosing a tracing system for instrumentation is its scalability

and availability. Since serverless platforms, by definition, can scale very quickly and offer high availability,

the tracing system must be able to cope with the elastic demand of serverless functions.

Performance
Although serverless functions offer virtually infinite elasticity in terms of scalability, that does not mean

they should run unmonitored. It is paramount to set up thresholds of performance expectations so that it is

possible to determine when something requires attention.

Some of the key measures to look for are:

- Invocations count

- Count of runtime crashes, application failures, cold starts, retries

- Memory utilization

- Duration of executions

Invocations count is obviously essential because it is going to tell developers how many times a function is

being used. That’s the main factor driving resource utilization and thus costs. The number of failures will

Dashbird.io • Serverless Best Practices 11

the functions health. If a function starts getting too many timeout errors, for example, it’s definitely worth

developers’ attention. The function might rely on third-party HTTP APIs that started to slow down, or

maybe the database used by the function is under too much load and needs care. That’s also valid for

excessive duration times.

Cold starts happen when our function does not have enough containers to serve the number of requests

coming in on a given point in time. This forces the underlying serverless platform to spin up a new

container – which may take from a few hundred milliseconds to several seconds – while the requester is

waiting for a response. There are many scenarios where this is undesirable. If that’s the case for our

application, we need to detect and monitor cold starts in our stack. Cloud services usually won’t provide

this information directly, but monitoring services such as Dashbird will.

Memory utilization is an important measure to identify opportunities for optimization. If a given function

consistently used only a fraction of the allocated memory, there may be space for reducing resources

allocated and saving money on the function execution.

Financial Costs
As stated before, it’s important to look out for opportunities to improve resource utilization and reduce our

serverless stack bill.

Usually cloud services like AWS won’t provide all the data we need for the analysis, but there are services

like Dashbird where we can look, for example, how much memory has been used by a function, over a

given period of time. It gives us the average, minimum and maximum utilization, making it easier to identify

optimization opportunities.

These services will also provide cost statistics broken down by function, instead of the entire serverless

stack – which is usually how cloud services will provide in their billing statements. Being able to narrow

down the analysis on a per-function basis is essential.

Policies
Setting custom policies based on the expected behavior of our functions is also of high importance. If we

expect, for example, that a function should take around 5 seconds to finish requests, we would want to

know when it starts taking 20, or maybe 50 seconds, for whatever reason. By having custom policies in an

advanced monitoring service, we can have it alerting ourselves so that our development team can be

proactive and immediately jump over the potential issue.

Architectural
Patterns

Dashbird.io • Serverless Best Practices 13

— "Our understanding of how and when to use Serverless

architectures is still in its infancy. We’re starting to see patterns

of recommended practice occur, and this knowledge will only

grow." Martin Fowler

API Gateway
An API Gateway service - either managed by a third-party provider or custom deployed - will provide a

single entry point for external requests, so that clients talk to the gateway, not each service individually.

Additional benefits would be having a layer of security against malicious attacks embedded in the

infrastructure behind the gateway, some concurrency handling to limit individual clients ability to consume

services, as well as authentication/authorization control logic.

Although an API Gateway is applicable to any cloud platform, serverless may benefit particularly from this

pattern, especially when adopted together with a microservices approach.

AWS, for example, offers an API gateway service that integrates with Lambda, their serverless platform.

Every major cloud service will have an offering to cover this area. There are also third-party services you

can use.

Microservices vs. Monolithic
One advantage of a serverless platform is that we can create multiple functions that work together

composing a single major system. Instead of having one function taking care of everything to perform a

task (monolithic approach), it is usually a good idea to break down the service into microservices, so that

each of those minor functions have a small job to do, and they do them well.

A microservices approach also contributes to better code maintainability, reusability and portability, which

are great indicators for the overall project health.

Idempotent Functions
Depending on the flow of our system, retries can be harmful. For instance, let’s imagine a function that is

responsible for adding a user to the database and sending a welcome email. If the function fails after

creating the user and gets retried you will have duplicated entries in the database.

A good way to overcome this is to design our functions to be idempotent. Idempotent functions are

functions with a single task, which either succeeds or can be retried without any damage to the system.

You could redesign the aforementioned function using AWS Step-Functions. First being the function

responsible for adding the user to the database and as a second step, another function sends the email.

Dashbird.io • Serverless Best Practices 14

Event-based
An event-based approach relies on being able to have our serverless functions automatically triggered

upon a given event occurrence. For example, AWS Lambda integrates with S3 (object storage): we can

configure it to automatically invoke a certain function when a new object is stored in a predetermined

bucket. AWS provides other integrations with Lambda that can be very helpful, such as DynamoDB

(NoSQL key-value database), Kinesis (stream processing) and more.

Other cloud services will have similar integrations, but from our observations, AWS is the cloud service

showing the highest commitment to advancing their serverless platform, so we should expect a better

offering from AWS in terms of integration as well.

This pattern can be useful and increase productivity in the application development since we can build on

top of interfaces already developed and matured by the cloud service provider and quickly come up with

workflows that can be complex, but yet simple and reliable.

Message-based
This architectural pattern resembles a bit the Observer pattern in object-oriented programming. In

essence, when we need to coordinate multiple serverless functions, it’s usually better to have them

communicate with each other through messaging systems than directly invoking each other.

In a message-based architecture, we create message queues for each communication flow needed by the

application. One or more functions will publish to the queue, and other function(s) will subscribe to the

queue and consume those messages. When there’s a need to change the workflow, it’s just a matter of

changing the queue subscriptions, which usually simplifies the adjustment and reduces risks of

unexpected issues.

Fan-in / Fan-out
This pattern breaks down a process over multiple tasks that are taken care of by individual workers (fan-

out) and later results from each worker can be grouped into a single consolidated result (fan-in).

Fan-in/fan-out is especially suitable to a serverless environment because each function invocation runs in

an isolated container with its own resources, which opens up opportunities for processing improvements.

CPU-intensive tasks are usually good candidates for this approach. IO-bound tasks can also benefit to a

fan-in/fan-out strategy, but not as straightforward. With IO-bound tasks, it might be cheaper to use

multithreading to optimize resource utilization. It will greatly depend on the runtime: programming

languages like C and Go are good for this type of task and could handle concurrency very well in a single

serverless function. Other languages, such as Python, which are not as optimized for concurrency and

parallelism, may end up struggling. In this case, fan-out of IO-bound tasks to multiple serverless functions

could be a good option.

We trust this ebook shed some light on issues and topics you should be aware and get deeper in order

to appropriately approach the software development cycle for a serverless platform.

Dashbird was especially designed from the ground up to provide the best monitoring and debugging

experience for serverless developers using AWS Lambda. If you are looking for a way to professionally

monitor your serverless applications in production, you should definitely check it out. You can try our full

set of features for a trial period or even use our service entirely free, in case your needs aren't that big.

Dashbird: https://dashbird.io

Closing remarks

15

a whole new
serverless level
Compared to other technologies, serverless is still in

sort of an early stage and knowledge will keep

growing in the next years about the best approaches

to better develop, deploy and monitor applications.

Keep an eye on the latest developments by following

our blog or subscribing to our newsletter at:

https://dashbird.io

